

Order of magnitude power calculation:

Gottschalk

<http://www.sciencedirect.com/science/article/pii/S0960982205014077#>

used 1.6 mW/mm² but failed to see responses from a fiber light,
whereas we use 4V * 2 Amps / 1.5 cm² say = tens of mW/mm²

Experiment: Friday October 10th

Worms prepared by Nikhil on plates with all-trans-retinal in the OP50 bacteria... get specs from him... he used specs from his previous experiment

EG5025

oxIs351 contains [unc-47p::channelrhodopsin::mCherry + lin-15(+) + Litmus]
desired result → slow down?

As soon as you hit the light, they stop -- and then with more light exposure they start moving again -- the pause lasts a second or so

THIS ONE REALLY WORKS! THEY STOP MOVING! Should do this first in the demo...

Light power: 3.8V, 1Amp limited, with Maxine's light setup and the 75mm focal length

ZX899

ljIs123 [mec-4p::ChR2(H134R)::YFP(codon-optimized) + unc-122p::RFP]. zxEx621 [glr-1p::Mac::mCherry + elt-2p::GFP].
more withdrawals / backing up

See some backing up... immediate

THIS COULD BE ITEM #2 in the demo...

ZX388

zxIs3 [unc-47p::ChR2(H134R)::YFP + lin-15(+)].
desired result → slow down...

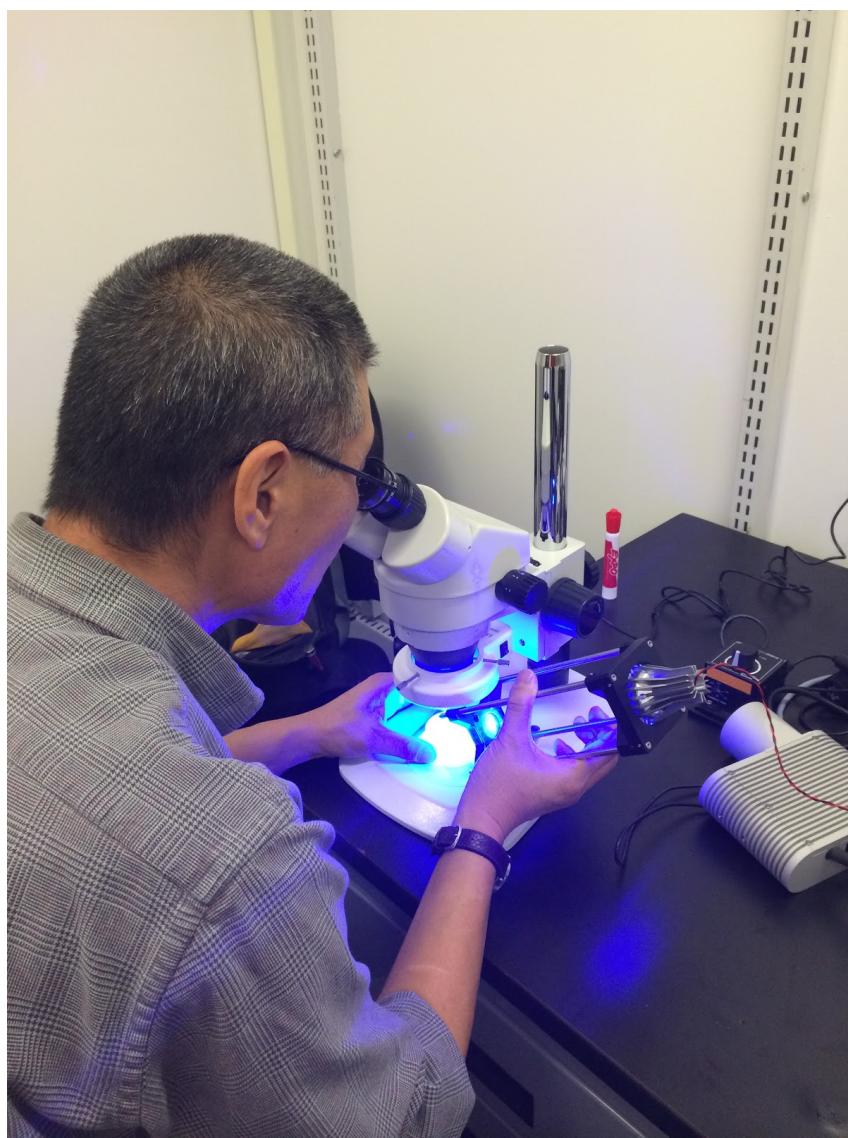
Not as dramatic an effect as the EG5025?

EG5027

oxIs353 contains [myo-3p::channelrhodopsin::mCherry + lin-15(+) + Litmus]
desired result → contraction of all muscles, maybe egg laying

Didn't see much from this initially but maybe still worth trying with the better light source.

EG5096


oxIs364 contains [unc-17p::channelrhodopsin::mCherry + lin-15(+) + Litmus].
desired result → produces coiling with light?

This looks like it might be working, to give a partial coiling-up! ... when the light is focused on just the right place?
75 mm focal length on the 2nd lens to focus the LED

May not happen for all worms...

ZX460
zxIs6 [unc-17p::ChR2(H134R)::YFP + lin-15(+)] V.
produce coiling...

Unclear if this is working...

Muscle spasm:

ChR2(gf)::YFP, expressed in body wall and egg-laying muscles from the *myo-3* promoter (transgene *zxEx17[pmyo-3::ChR2(gf)::YFP]*), was detectable at the plasma membrane ([Figure 2A](#), [Figure S1A](#) in the [Supplemental Data](#) available with this article online) and in intracellular structures colocalizing with a marker for the endoplasmic reticulum (ER; [Figures S1A–S1C](#)). When exposed to light, *zxEx17* animals reproducibly showed strong and simultaneous contractions of (apparently) all muscle cells, causing a **readily visible shrinking of the body** ([Figure 2B](#); [Movie S1](#)). **Often, adult animals expelled eggs**, as a result of contraction of vulval muscles, of increased internal pressure, or of both ([Movie S2](#)).

Should see this in EG5027,

Mechanosensory response:

Next, we tested whether ChR2 could depolarize neuronal cells, namely the mechanosensory neurons ALM, PLM, AVM, and PVM. Here, we expressed it from the *mec-4* promoter (*zxEx18[pmec-4::ChR2(gf)::YFP]*). ChR2(gf)::YFP was detectable at plasma membranes (cell bodies and processes) and in membranous intracellular compartments ([Figure 4A](#)).

Analyzing light responses is complicated by the fact that *C. elegans* avoids strong light, most likely as a result of (noxious) heat caused by light absorption[17], though a specific light response was also reported [18]. However, when *zxEx18* animals were illuminated five consecutive times for circa 1 s with blue light, individuals raised in the presence of retinal **showed withdrawals (and sometimes accelerations) significantly more often** (circa 72% in first, and 35% in fifth, trials; [Figure 4B](#); [Movie S3](#)) than the same transgenic animals raised without retinal (circa 10% and 16%, respectively; [Figure 4B](#)).

Should see this ZX899
