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where coincidence pattern ¢; is the co-occurrence of r:"‘ ‘th Markov chain from child

1, r;*'th Markov chain from child 2, ---, and #;*'th Markov chain from child M.

2(gr)=P( eflg:(Nec Y alcigy) (3)
ci(eCk
a(cing)=P(elc(®) D Ple(®le(t—1),9,)m-1(c;9,) 4)
c(t—1)eC*
w(c,9,)=P( e|c(t=0)P(c(t=0)|g,) (5)
Bel(c)oc Y Bilc,9,) (6)
g,€G*

Bcng)=P( elc(t) D Plele,(t—1),9)B, 1(c;r9,) (7)

c(t—1)eC*
By(c,9.)=P( elec,(t=0)P(c;|g,)mo(g,) (8)
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George & Hawkins, 2009



Coarse-grained brain maps give un-testable models

Cerebral Cortex: isocortex
homotypical 6-layered

L —
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Thalamus -,

Parahippocampal gyrus: peri-allocortex | Metencephalon -
Hippocampus: allocortex

Solari and Stoner 201 |



Coarse-grained brain maps give un-testable models

to basal ganglia
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from basal ganglia

thalamic gating of “copy and paste” operations
between cortical working memory buffers, executing

a sequence of steps controlled by the basal ganglia Stewart. Eliasmith ot al 2010



Coarse-grained brain maps give un-testable models

to basal ganglia
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thalamic gating of “copy and paste” operations
between cortical working memory buffers, executing

a sequence of steps controlled by the basal ganglia Stewart. Eliasmith ot al 2010



The dream of a single “canonical” cortical circuit
Likely a gross over-simplification of reality

Subcortical, intra-, and inter-areal input

Cooperative
Layer 2/3 / / / / feature resolution

, Soft WTA
Local, inter-patch,

and inter-areal feedback

Output selection
Layer 5

Soft WTA

Subcortical output

Douglas & Martin 2004



Molecularly-defined cortical connectivity

Layer 5

Gprin3
Tmem200a
Kenn2
Mylip
Sic17a6

Postn
Hsd11b1
Fam
Layn
Anxal
Sic17a8
Chrna6

frontal cortex
M1

S2
contralateral S1
striatum

thalamus
superior colliculus

pons
trigeminal nuclous.

Proportion of

oo-labelini

(retrograde labeling + FISH)

Sorensen et al, Cerebral Cortex, 2013



Emerging picture: many computations, not one

Marcus, Marblestone, Dean, in prep.

Computation

Algorithmic/
representational
realization

Neural
implementation(s)

Brain
location(s)

Rapid perceptual
classification

Complex
spatiotemporal
pattern recognition
Learning efficient
coding of inputs

Working memory

Decision making

Gating of
information flow

Gain control

Sequencing of
events over time
78

Representation
and
transformation of
variables

Variable binding

Receptive fields, pooling and
chcé?l contrast normalization

Bayesian belief propagation
19,63

Sparse coding®

Continuous or discrete
attractor states in

66,67
networks
Temporal-difference
reinforcement learning
algorithm369’7°; actor-critic
models’’

Winner-take-all networks”

Context-dependent tuning of
activity in recurrent network
dynamics74

Shifter circuits®* "

Divisive normalization>®

Feed-forward cascades;
Serial working memories’®

Population coding *°

Holographic reduced
representations >6,86

Dynamic bindin987’88

Hierarchies of simgle
and complex cells 2

Feedforward and
feedback pathwa}/s in
cortical hierarchy'®
Thresholdinf% and local
competition

Persistent activity in
recurrent networks®®

Cortically implemented
Bayesian inference
networks combined with
temporal difference
reinforcement learning
via the dopamine
system and action
selection systems in the
basal gangla’
Recurrent networks
coupled via lateral
inhibition”

Recurrent neural
networks implementing
line attractors and
selection vectors™
Divergent excitatory
relays and input-
selective shunting
inhibition in dendrites™
Shunting inhibition in
networks or balanced
background synaptic
%xcitation and inhibition
Synfire chainsso'sz;
Thalamo-cortico-striatal
|oop883,84

Time-varying firing
rates of cosine-tuned
neurons representing
dot products with
encoding vectors
Circular convolution of
vectors represented by
neural population codes

Neural
synchronization89

Visual system

Sensory
hierarchies

Sensory and
other systems

Prefrontal cortex

Prefrontal cortex

Prefrontal cortex

Prefrontal cortex

Visual system

Common across
many cortical
areas

Common across
many cortical
areas

Motor cortex

Cortical areas
involved in
sequential or
symbolic
processing




Multi-level complexity

Example: hundreds of proteins in each synaptic vesicle
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Nature Reviews | Neuroscience

Deep molecular diversity of
mammalian synapses: why it matters
and how to measure it

Nancy A. O’'Rourke, Nicholas C. Weiler, Kristina D. Micheva and Stephen J. Smith
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rVery Iong-term memories may be stored in the pattern

Multi-level complexity

Example: the physical basis of long-term memory is still uncertain

‘of holes in the perineuronal net (i.c. in the extracellular matrix),

Roger Y. Tsien’

Department of Pharmacology, Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of California at San Diego,
La Jolla, CA 92093-0647

Contributed by Roger Y. Tsien, June 3, 2013 (sent for review May 16, 2013)

(vs. bistable auto-phosphorylating kinases at the synapse)



How to cope with the brain’s complexity?

Activity history
Behavior
Connectivity (circuit diagram)
Development (cell lineage tree)
Expression (epigenetic cell types,

+ single-synapse proteomes)

Need: a technology to cheaply / rapidly
measure all these variables in a single brain.

Need: (sub)cellular resolution + whole brain scope.

see upcoming essay by Church, Marblestone & Kalhor



How to cope with the brain’s complexity?
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Q for thesis:

What would such a technology conceivably look like?



Activity history
Behavior
Connectivity (circuit diagram)
Development (cell lineage tree)
Expression (epigenetic cell types,

+ single-synapse proteomes)

We want a technology which can cheaply / easily
measure all these variables in a single brain.

Need (sub)cellular resolution + whole brain scope.

see upcoming essay by Church, Marblestone & Kalhor



“every spike from every neuron”
in a mammalian brain

>100 years to record from entire mouse brain Mouse brain:
' - 100M neurons

>100B connections

|-1000 Hz firing rates
0.5 cc volume

# neurons simultaneously recorded

. "q, ,
'0;19\ » Visual coupling

:T\9? * Walking spinal cord
Frontal Synfire chains
Movement learning

« Brain-Machine interface
2040 2080 2120 i
year of pu blicati 0 n PRESIDENTOBAMA IS CALLINGON THE SCIEN?E COMMUNITY

RAIN RESEARCH

THROUGH ADVANCING

NNOVATIVE

INITIATIVE EUROTECHNOLOGIES

Konrad Kording 201 3;Alivasatos et al 2012



nobody has written down a designh that clearly
solves the problem
does not violate any laws of physics
does not severely damage the brain




Physics constraints on brain activity mapping

< 2C temperature change:
—» < 50 mW steady-state power dissipation
< | % tissue volume displacement

A) Electrical B) Optical a

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors http://arxiv.org/abs/1306.5709


http://arxiv.org/abs/1306.5709

Physics constraints on brain activity mapping

100-200 um max recording radius

100 um

"

™
Y

-100 um 100 um

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors [Neuron/Matlab simulation based on Gold and Koch]



Physics constraints on brain activity mapping

d ) (]
signal size ~ 100-1000 uVv
§ 1o°-5 Decay constant = 28 + 1 um .
: noise floor ~ 10-20 uV
§ \.“ogq é?? o
* Viotmson = [4ks TR(BW)]"? ~ 9 uV
© omeceem - amplifier noise ~ | uV
rmax ~ 130 um noise from other neurons

data: Berry lab, Princeton
Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Physics constraints on brain activity mapping

750k -7.5M electrodes for 75M mouse neurons

current spike sorting algorithms: < |0 neurons / electrode
information theory estimate: < 100 neurons / electrode
estimate from max recording radius: < 1000 neurons / electrode

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



0.05mm

Physics constraints on brain activity mapping

50 um!

wirelessly-powered RFID chip

> |0 p] per transmitted bit

x 100 Gbit/sec = IW

128-bit Memory (21pm x32pum)

need at 2-3 orders of magnitude improvement

in power efficiency of electronics
to use embedded chips for whole-brain recording

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Physics constraints on brain activity mapping

_ power limits on switching elements
10 T - T . T

2—-photon laser pulse
o B R e e e e e e e e e - - - 10

10 -_Ctireﬂt RFID transmission
.8 |40mwW 110° §
— 1] () | e E
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~ 7
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L 1 06 i —\ L0
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=
— )
8 1072 2
> ®
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o
o
10°°
1 0'2 1 1 1 1 1 1 7 1 0-8
1995 2000 2005 2010 2015 2020 2025 2030

Year
[CMOS data from Rod Tucker]

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Physics constraints on brain activity mapping

power limits on data transmission
Frequency (Hz)

1016 1014 1012 1010 108
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g 1010 i _
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Workarounds:
Seo et al
store data locally and read out slowly —~

use ultrasound or infrared/visible light rather than RF / microwave transmission

Marblestone et al, Front. Comp. Neurosci (2013): with >17 co-authors



Back to the drawing board
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What if each cell could record its own
activity?

V8" TAPE 1-7/BIPS WINDOW TAPE REELS
+¢A Y FND&REJ)
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TAPE HEAD PRESSURE
GUIC" OPENING PAD

PSTAN 8 PINCH-/
Rm,'._F_R OPENINGS

got $9M NIH grant to pursue this

w/ Kording, Zamft, Church, Boyden et al



a molecular recording device in each neuron

Encode information via control of polymerase error rate

.
® Closed calcium channel

LA AL A SRS fePTPIRIRPIOIRIRRIRREIRNYSY
H:'h':n” AUV VTN MU\HHHM
Wl b.li WAL ‘JUL’.‘JWWL’ :
Ticker Tape Polymerase

x X
- x % XX o
X x X x
X x x X
- -

( Ay yi 44 0 Icium channel
'&\\ ‘ l,,"l.‘ "\\\\« .' pen calcium channe
E”?‘"ee“’" o AARAARARARRRAY
merase i ) AU
P ' VMMMV
- s
I ' I I . Q1. suun KnownTemplate }.
Wrong nucleotides
DNA polymerase adds ..__., .
new nucleotides that bind to l l .
an existing strand of DNA
Kording, 201 |

Yuste and Church, Scientific American, 2014 Figure by Reza Kalhor



0.05mm

oy o o

electronic

0.05mm

128-bit Memory (21pm x32pm)

Bandwidth: (| bit/ | ms/ neuron) x (1e8 neurons) = 100 gigabit / s
to read out a mouse brain at | bit per ms per neuron in real time

readout of information stored in biomolecules can be arbitrarily slow

Power: CMOS bit switching at 1000 Hz consumes more energy than a neuron

molecular recorders are 5-6 orders of magnitude more efficient

ultimate limit: kT x log(2) per bit x 1000 bps 3e-18 W
practical limit for electronics: 40 kT per bit x 1000 bps le-I6 W
current CMOS: |e6 worse than the 40 kT per bit limit le-IOW

IfF x (1V)*2 x 1000 Hz le-I12 W
| neuron: (1e8 ATP / spike) x 100 Hz S5e-10 W

(25W / human brain) x (I human brain / lel | neurons) 2.5e=10 W
ATP consumption at 2000 Hz: 2000 Hz x (5e-20) / ATP) le-16 W



0.05mm

electronic

0.05mm

128-bit Memory (21pm x32pm)

| E | 7 DNA sequencing
' 11,000,000 - ]
D 9 %
N
» O «¥ 10,000 -
BTV gWw
o230
4S £ 100- e .-
g 5 S E T _____..---—
= ....------"""'" computers
]| ——— | |
2001 2006 2011

Konrad Kording



Sequencing-based screening for
ion-dependent DNA pol error rates

5-bp Barcode
5’ — e\ NNNNGATGGTCATAGCTGTTGTA

Partial  ddCTACCAGTATCGACAACATAAAAATAAAAG®®®ACTGCATGACTGACTGAATCAATACTAAAA-S’
PEA1 3’ dideoxy-C Error-Prone Primer Extension
Followed by Salt Correction

57 — n——NNNNGATGGTCATAGCTGTTGTATTGTGATTTTGCo®@ TGCCGTACTAACTGACTTAGTTATGAGTTT
ddCTACCAGTATCGACAACATAAAAATAAAAGO®OACTGCATGACTGACTGAATCAATACTAAAA-D'

} Adapter Ligation Partial PEA
5/ - n— N NNNGATGGTCATAGCTGTTGTATTGTGATTTTGO 0@ TGCCGTACTAACTGACT TAGT TATGAGTT T e ———

ddCTACCAGTATCGACAACATAAAAATAAAAG®®@ACTGCATGACTGACTGAATCAATACTAAAA M —
} PCR Primer Addition hick

S’ — e \NNNNGATGGTCATAGCTGTTGTATTGTGATTTTGo@0@ TGCCGTACTAACTGACTTAGTTATGAGT T T mummm
AN N\
ddCTACCAGTATCGACAACATAAAAATAAAAGO@O ACTGCATGACTGACTGAATCAATAC TAAAAA_— 57

S — I\ NNNNGATGGTCATAGCTGTTGTATTGTGATTTTCo@0@ TGCCGTACTAACTGACTTAGT TATGAGT T'T nm—
I NN NNNCTACCAGTATCGACAACATAACACTAAAACOO0O ACGGCATGATTGACTGAATCAATACT CAAA M- 5 '

Pooling, Cleanup,
150-bp Paired-End Deep Sequencing
Data Analysis

biochemistry via sequencing

[Zamft*, Marblestone®, et al. PLoS ONE (2012)]



Sequencing-based screening for
ion-dependent DNA pol error rates

biochemistry via sequencing

[Zamft*, Marblestone®, et al. PLoS ONE (2012)]



Sequencing-based screening for
ion-dependent DNA pol error rates

—_ T
o\o T
N—" . . .
% single nt resolution . )
o & . 800 uM Mn<*
- T . (N = 6072, 6208)
O GT, -
= T
© . . S T 114
T
8_ AAT a TAGR G 's A G Y G G
o : e cy % 2 2 Sa6¥c
8 A o = ‘- A 1 —
7 400 uM
[ w
S (N = 10443, 7022)
p— 75 uM
0.25% = 2 (N = %932, 2182)

10 20 30 40 50 60 70
Primer Extension Position (bp)

[Zamft*, Marblestone®, et al. PLoS ONE (2012)]



lota pol: gets “A” wrong 70% of the time

Example of a good read alighed with revcomp(template):

forward primer

binding site :
/ deletion
TTTTTGATGGTCATAGCTGTTGTATTTTTGTTTTCATTCTTTCGTTTGTTGCTTCCTTCGGCTGTGCTGCTGGCATGCTGATTGGCTT él [TGATTT
GATGGTCATAGCTGTTGTATTTTTATTTTCATTCATTCATTCATTGCATCCATCGACTGAGCT ACTGACGTA CTGACTGACTTAGTTATGATTT

A AAAA AAAAAAAAAAAA

with Brad Zamft



DNA pol offerings from Nature

20 cC
15 .8
L (U A~
o 15 1 2 C
Q_v
%5 5} 10.5 é 'd
C ==
= D
e s O 0 =
O o
T Q
ucg_g 40
B2
=
20+t
0 1 1
0 200 400 600 800 1000

Mn°" Concentration (uM)

3+ 10.5 é
© <
% 2t ’52\,
€ 025 &g
28 | 22
© w
Og |[-@-T needs custom
28 -@® =G ) . .
o5 |-@-
L 4Zetk Ry pol engineering
= 5 ’1- o "
=
o-0-¢ 200 M Mn?*
0 1 . A
107 107 10° 10° 10*

[Zamft*, Marblestone™, et al. PLoS ONE (2012)] Ca** Concentration (uM)



§/\ error-prone replication switch ions %

0 |
Time (min) £

removal of copied
strands from surface

sequencing and
error-counting

A Lo B i =
A gém lgzlugm Mg = Mn
T NV LL P

_Template Position . |

Error Rate

computer

+Mg

Encoding time-series into DNA

solenoid
valve

flow cell with
primer immobilized

circular template

solenoid
waste
valve

with Brad Zamft and Noah Donoghue; time-coding results are preliminary



Theoretical temporal resolution of a DNAP ensemble

Nucleotide i —» Nucleotide i+1
-At/t —At/t
e 7 e ¢

p(A’)Q-parhs =P + (1 o P)

—1 ”

A

Te

vy

O
N

B Continuous
B Pause
B Mixed

even with no “paused state”,
dwell times are stochastic

Incorporation
Probability

Time (ms)

NT 50

ENT 200 nucleotide «— time

BNT 400 . .
BNT 600 Mapping smears over time

0 Time (ms) 10000

Incorporation
Probability

[Glaser, Zamft*, Marblestone*, et al. PLoS Computational Biology (201 3)]



Theoretical temporal resolution of a DNAP ensemble

In the absence of a synchronization / clock mechanism:

<10 ms temporal resolution does not persist for > seconds,
even with >1000 simultaneously-replicated templates per cell

unless a faster-than-natural polymerase can be engineered
(while maintaining other favorable properties)

~ 100 ms temporal resolution is feasible w/ optimal
combination of individual naturally-occurring polymerase
parameters

~ 1000 ms temporal resolution feasible with realistic
near-term polymerase parameters

need ensemble synchronization to reach single-spike resolution

[Glaser, Zamft*, Marblestone*, et al. PLoS Computational Biology (201 3)]



slow-timescale gene expression tickertape

Hack CRISPR
bacterial immune system
for molecular recording

Leader ‘ Spacer] ‘ Spacer2‘ oril term1 ori2 term?2
virion1 nickase . :
T . : : virion2 nickase
(e.g., porcine circovirus)
spacer virion1 virion2
Incorporation term1loril term2ori2
mediated by ST1 ST1
ST1Cas1 and ST1Cas2 PAM PAM
(optimized for efficient
incorporation)
protol proto2
proto1 proto2
endogenous endogenous
pol pol
NMcas9 SPcas9
+gRNAT sensor-dependent  +gRNA2 constant
expression expression

with Esvelt, Chavez, Church, Gootenberg

cuts at cuts at
termioril virion1 term2ori2 virion2
conjunction termloril  conjunction term2ori2
STT ST1
PAM PAM
—_——— protol proto2

control expression of NMcas9 relative to SPcas9
or use the same cas9 and control gRNA expression
(which could allow generalization to many sensors)
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Connectivity (circuit diagram)
Development (cell lineage tree)
Expression (epigenetic cell types,

+ single-synapse proteomes)

Need: a technology to cheaply / rapidly
measure all these variables in a single brain.

Need: (sub)cellular resolution + whole brain scope.

see upcoming essay by Church, Marblestone & Kalhor



] dense 3D cwcmtry
| |
m>l synapse (connectlon) per um3 ,i

[Gong et al, 201 3] [Mischenko, 2010]



A B C

SBEM FIB-SEM ATUM-SEM

e

Assumption: widely believed that electron microscopy (EM) is
the only viable method for cellular-resolution connectomics

Marblestone et al 2013



Can’t run a simulation

Marblestone et al 2013



BrainBow: random lor for each neuron
... analog implementation of a profound digital idea

Problem: only ~20 distinguishable colors in practice...

a XFP combinations

Outcome for Resulting
eachcopy colour

OE Y oo |
B Y Y Buegreen &8
YYY aen REEN
. I e 0

YHEE oreoe @0 LR
HEE = )

D

Lichtman, Sanes, Livet et al



4 possible DNA sequences of length N “letters”

oloioolioiololoiooloioli
oiolioiololooioiotlioltli
oolioiliolololioiiiolooll

w/ Zador, Church et al



Strategy #1: deliver random DNA strings by cloning into a virus

Duplicate barcode probability per mouse brain: negligible for 30 nt barcodes

P(j,n)=n!+Binomial(4/,n)/(4)"

where 7 is the size of the cell population and ; is the DNA barcode length in nucleotides. P(;,7) can be approximated by

n?/2

P(j,n) = exp(— -

)

such that for » = 7.5%10” neurons and j = 31 base-long barcodes, the probability of a duplication 1—P(;,n) < 0.001. This corresponds
to a total barcode population size of 4°! & 5 10'5.

Strategy #2: have each cell make its own barcode in-vivo

Example: invertase Theoretical diversity

» 1 4 2 p 3 4 4 p ..Nn 4
} +Rei k! x 2*
> 1 4 v P € 4 T P .N 4

Other in-vivo barcoding strategies are also under way in the Church lab
Peikon, Gizatullina & Zador, 2014



Zador: Pair barcodes of connected cells, then sequence

GACCGGATAA TAGACATTGC

T T extracts connectivity
but
A NNINNNS Uy 1) scrambles cell positions
i T
| 2) hard to integrate w/
| molecular “annotations”
GACTGATCGG. AGCTGAATTC//’ (e.g.’ gene expression)

Marblestone, Daugharthy, Kalhor et al, 2014



Fluorescent In-Situ DNA Sequencing (FISSEQ):

A

digital 4 color microscopy

Nucleic Acid
(RNA or DNA)

Microscope

Image Analysis

.
GCATCATC
ACAT.CAAA

GGATS TAG TCGA"\TGC GCAT‘CATG

* AAGATGGG

GCATCATA
. GCGGCATT

CGAT.GCAT

Figure by Reza Kalhor
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Fluorescence In Situ Sequencing

| Raw 3D deconvolution

Sequencing-by-ligation
in the nucleus f

Highly Multiplexed Subcellular RNA
'Sequencing in Situ

Je Hyuk Lee,**t Evan R. Daugharthy,>*** Jonathan Scheiman,? Reza Kalhor,?
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digital 4 color microscopy

Fluorescent In-Situ DNA Sequencing (FISSEQ):
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digital 4 color microscopy
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digital 4 color microscopy

Fluorescent In Situ Sequencing
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digital 4 color microscopy

Resolvablllty of synafes by strict criterion
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A much easier problem than whole-brain electron microscopy!

Marblestone, Daugharthy, Kalhor et al, 2014



digital 4 color microscopy

Example: “array tomography” thin sectioning + fluorescence microscopy

1. Fix tissue
(PR 2. Dissect and embed in LR White
Start >>> B~

2=
Finish! u

8. Volume image

3. Cut serial sections on
ultramicrotome

on file server >
‘r!n-: 1
) Tacky layer 7
l Adhesive splice
Resi imen block : _
e i w Ultrathin sections 4. Bond ribbon of serial
Tacky layer ] | sections to coverslip
Diamaond knife
|
7. Collate & align
section images
6. Image ribbon 5. Immunostain ribbon

Array Tomography: A New Tool for Imaging
the Molecular Architecture and
Ultrastructure of Neural Circuits

Kristina D. Micheva'* and Stephen J Smith'*



Red dots are synapses, resolved w/ diff. limited optics via thin-sectioning

Smith lab, Stanford



digital 4 color microscopy
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Informatic Deconvolution
with Known Barcodes

Ultra-thin Sectionin

Marblestone, Daugharthy et al 2014

Primer 1 Primer 2

Enhance effective resolution
by “stratifying” molecules
into different image frames:

SA(1/3) xyz improvement
where S is slowdown factor

Use prior information about
entire pool of barcodes to
de-mix multiple signals from
a single resolution voxel:

35-base barcodes suffice
for no deconvolution
ambiguities in mouse



digital 4 color microscopy
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Simulations of informatic deconvolution verify estimated scaling behavior
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SBEM FIB-SEM ATUM-SEM

>$ 1B, without
molecular info

DNA
barcoding

intracellular
protein
trafficking

<$10M, with
molecular info

fluorescent
in-situ RNA
sequencing

fast 100 nm
microscopy

Marblestone et al 2014; with Church, Zador, Boyden, Daugharthy, Kalhor, Lee, Peikon, Chen, Tillberg et al
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DNA-barcoded antibodies FISSEQ
(Lee et al 2014)
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see upcoming essay by Church, Marblestone & Kalhor



Well-known “systems engineering” methods
by-&-for the sciences of simplicity...
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How to extend to the sciences of complex

Allen Institute mouse brain connectivity atlas (2014)
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