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Dynamic range of physical addressability

X,¥,Z ~ nanometers

XY, Z ~ centimeters

C ~ 4% >> 23000

Image vs. construct



Summary
Image:

-Using expansion microscopy and in-situ optical sequencing of DNA,
we are on path to “arbitrary resolution, infinite color microscopy” for bio

-Sequencing neuron-indexing RNA barcodes this way should allow full
mammalian brain connectomes for ~$30M

Construct:
-DNA origami allows ~5 nm patterning of diverse materials over ~100
nm length scales by self-assembly, with trivial/facile design

-We should be able to organize DNA origami into larger systems by
patterning them on shrunken DNA microarrays

-A “molecular 3D printer’, made through various steps involving DNA
origami, DNA templating of proteins / peptides, and modular protein
engineering with fixed backbones and programmable interfaces, could be
an interesting first step to explore and demo “APM” principles



Part |:image

How to scalably map the brain’s architecture



Key circuits span the entire brain (cm)

Cerebral Cortex: isocortex
homotypical 6-layered
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: Basal Ganglia
Parahippocampal gyrus: peri-allocortex

Metencephalon
Hippocampus: allocortex

Cognitive consilience: primate non-primary
neuroanatomical circuits underlying cognition

Soren Van Hout Solari'?* and Rich Stoner**



...yet are also organized at micron and nm scale
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Structural brain mapping today
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Current practice: widely believed that electron microscopy (EM) is the only viable
method for cellular-resolution connectomics

Problems:
-Manual human segmentation, taking minutes per cubic micron (Kasthuri, 2015)
-Does not provide molecular information
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Scalable brain mapping: unique ID’s for structure

4 possible DNA sequences of length N “letters”
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Zador, Cepko, Tabin,Walsh, Church et al:
can give every neuron a uniquely-identifiable DNA “barcode”



DNA Barcodes via Bulk Sequencing
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Scalable brain mapping: unique ID’s for structure

digital 4 color microscopy

# of # of molecules
cycles  discriminated

1 4
10 41° about 10°
30 439 about 10'%
— \
4-color imaging step biochemistry step
~_ __—

Church lab circa ~2014

..« N cycles

Read one letter of RNA
at a time, sequentially



digital 4 color microscopy

# of # of molecules
cycles discriminated

Fluorescent In-Situ RNA Sequencing (FISSEQ):
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Fluorescence In Situ Sequencing
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digital 4 color microscopy

Fluorescent In-Situ RNA Sequencing (FISSEQ):
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In-situ readout of Zador barcodes

Cycle 15

GCAGGG ! T TAAATCA




In-situ barcode connectomics

x,Y,Z ~ 600 nm
XY, Z> 1] cm
c ~ infinity

Synaptic resolution requires x,y,z < 100 nm

~ Fluorescent In Situ Sequencing

GCATCATG
°

\
|
\
\
\
\
\
5
i
!




In-situ barcode connectomics

x,,z ~ 600 nm
XY, Z> 1] cm
C ~ infinity

Synaptic resolution requires x,y,z < 100 nm

c o /' Fluorescent In Situ Sequencing
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In-situ barcode connectomics
x,,z ~ 600 nm

XY, ZL>1cm

C ~ infinity

Synaptic resolution requires x,y,z < 100 nm
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Expansion Microscopy (ExM)

Chen* Tillberg*, Boyden



Expansion Microscopy (ExM)

no expansion 4.5x linear expansion

same microscope: a fast, diffraction-limited confocal

Boyden and Cai labs



Expansion Microscopy (ExM)

Synapses at different levels of ExM expansion (simulated):

| x 2X 3X 4x 5x | Ox 20x

Simulation based on Kasthuri et al published dataset
Color indicates cell of origin

| x real Bassoon/Homer 4.5x real Bassoon/Homer
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FISSEQ-ExM
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FISSEQ-ExM

Legend

Alon*, Goodman*, Chen*, Daugharthy, .
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Neuron 13:

Gene Symbol
Tnkslbpl
NM_023852
Kazn

Etl4

Calnl

Navl
Sosl
KIh132
Arpp21
Map2k5
Uchll
Mir6236
Prdm2
Gm20594
Gludil
Ppmif

FISSEQ-ExM

Gene name
Tankyrase 1 Binding Protein 1
RAB3C, Member RAS Oncogene Family

Kazrin, Periplakin Interacting Protein

Epilepsy, Occipitotemporal Lobe, And Migraine With Aura
Calneuron 1

Neuron Navigator 1

SOS Ras/Rac Guanine Nucleotide Exchange Factor 1
Kelch Like Family Member 32
CAMP Regulated Phosphoprotein 21

Mitogen-Activated Protein Kinase Kinase 5

Ubiquitin C-Terminal Hydrolase L1

PR/SET Domain 2

Glutamate Dehydrogenase 1

Protein Phosphatase, Mg2+/Mn2+ Dependent 1F

Alon*, Goodman*, Chen*, Daugharthy, ..., Church**
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Scalable brain mapping: unique ID’s for structure

Reading neuron barcode RNA sequences
in physically expanded brain tissue

Data by Richie Kohman, analysis by Andrew Xue, Dan Goodwin, Ruihan Zhang



Scalable brain mapping: unique ID’s for structure

Reading neuron barcode RNA sequences
in physically expanded brain tissue

full thickness of mouse cortex

(first-pass automatic barcode extraction)

Data by Richie Kohman, analysis by Andrew Xue, Dan Goodwin, Ruihan Zhang et al



“Rosetta Brain”

ACtiVit)’ ? Molecular Tickertapes ?
Behavior |

COI‘I“ECtiVitY—) iI2] (in-vivo-generated)
D i -' FISSEQ
QeVE|Opment—> % (update Ix per division) (Lee et al 2014)

Expression ——5 RNA Transcripts + /
DNA-barcoded Antibodies

B ——

ExM
(Chen et al 2014)

Marlon Stoeckius, =) Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Harold Swerdlow,
Rahul Satija, Peter Smibert

doi: https://doi.org/ 10.1101/113068




Part 2: construct

How to position molecules where we want



DNA origami
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DNA origami




DNA origami

caDNAno: www.cadnano.org

Slice Panel Path Panel 3D Panel
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Douglas, Marblestone et al, 2009



http://www.cadnano.org

DNA origami

guide staples
with toeholds

ouglas, Bachelet, 2012

locked

unlocked




DNA origami

X,,Z ~ 5-10 nm

DNA base spacing = 0.3 nm
helical diameter = 2 nm

orderly manner on solid sub , -
afford a design accuracy better than 5 nm13 16, and the sub-

nanometre scale has been reached only within the unit cells of
designed DNA crystals'. Here, we report a molecular position-

XY, Z > 100 nm

C ~ no practical limit
NOT quite small enough for covalent “APM”

NOT quite big enough for integration into devices



DNA origami

x,,Z ~ 5-10 nm

DNA base spacing = 0.3 nm
helical diameter = 2 nm

orderly manner on solid sub , -
afford a design accuracy better than 5 nm13 16, and the sub-

nanometre scale has been reached only within the unit cells of
designed DNA crystals'’. Here, we report a molecular position-

XY, Z> 100 nm

C ~ no practical limit

NOT quite small enough for covalent “APM”

NOT quite big enough for integration into devices




How to combine “top-down” with “bottom-up” in nanotechnology?

Rothemund 2009



How to combine “top-down” with “bottom-up” in nanotechnology?

hotolithograph
g SHapy DNA micro-arrays
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= chip-scale programmable nano-fabrication

[Church, Marblestone et al]



How to combine “top-down” with “bottom-up” in nanotechnology?

e.g., light-directed DNA synthesis on chip
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DNA micro-arrays
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= chip-scale programmable nano-fabrication

[Church, Marblestone et al]



early “nm2cm”
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early “nm2cm’
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How to combine “top-down” with “bottom-up” in nanotechnology?

Width of a single hair

&

3D nanofabrication by volumetric Before Shrinking After éhrihking
deposition and controlled shrinkage of

patterned scaffolds

Daniel Oran"", Samuel G. Rodriques’%”, Ruixuan Gao', Shoh Asano'-3, Mark A. Skylar-Scott*>,
Fei Chen'5, Paul W. Tillberg"”:T, Adam H. Marblestone'+, Edward S. Boyden':6:8:%10:+§




How to combine “top-down” with “bottom-up” in nanotechnology?

E expanded F shrunken G

A A A nm
100 200 300 400 500 600

3D nanofabrication by volumetric
deposition and controlled shrinkage of
patterned scaffolds

Daniel Oran’*, Samuel G. Rodriques’-%*, Ruixuan Gao', Shoh Asano'-3, Mark A. Skylar-Scott*>,
Fei Chen"5, Paul W. Tillberg"”T, Adam H. Marblestone'+, Edward S. Boyden'68%10+§



How to combine “top-down” with “bottom-up” in nanotechnology?

3D nanofabrication by volumetric
deposition and controlled shrinkage of
patterned scaffolds

Daniel Oran’", Samuel G. Rodriques’-%*, Ruixuan Gao', Shoh Asano’-3, Mark A. Skylar-Scott*®,
Fei Chen"5, Paul W. Tillberg"”T, Adam H. Marblestone'+, Edward S. Boyden'68%10+§



How to combine “top-down” with “bottom-up” in nanotechnology?

Unique probes at
known locations—”_ S
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DNA origami

X,,Z ~ 5-10 nm

DNA base spacing = 0.3 nm
helical diameter = 2 nm

orderly manner on solid substrates''?, So far, few objects
afford a design accuracy better than 5 nm™%, and the sub-
nanometre scale has been reached only within the unit cells of
designed DNA crystals'. Here, we report a molecular position-

XY, Z > 100 nm

C ~ no practical limit

NOT quite small enough for covalent “APM”

NOT quite big enough for integration into devices




Going smaller...

scaffolded origami

previous work
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Going smaller...

prokaryotic prokaryotic
RNA polymerase (4kmu) ribosome (2wdk+2wdl)

eukaryotic eukaryotic ribosome
RNA polymerase (1i6h) (3u5b+3u5c+3u5d+3u5e)




Going smaller...

Molecular 3D Printer

Rigid 3D Frameworks
&
Controllable Actuators

Macro-Molecular
Building-Blocks

---------
mee e e e e e e e me 2T T LT T LT T e 2Ta T aTa S aTa aTa

Molecular additive manufacturing workshop, 2016 (w/ Eric)



Going smaller...

Molecular 3D Printer

Rigid 3D Frameworks
&
Controllable Actuators

Macro-Molecular
Building-BIocks

|
|
, ‘
-
) ) e —
»~ »~ » » »
- . A A . o .
[

[} ‘. \ -,,"
¥
‘! J‘k
e - -

Molecular additive manufacturing workshop, 2016 (w/ Eric)



Going smaller...

Using this combination of placement and analysis, we rationally
@ adjusted the average distance between fluorescent molecules
< > and reactive groups from 1.5 to 9 nm in 123 discrete displace-

A ment steps. The smallest displacement step possible was

0.04 nm, which is slightly less than the Bohr radius. The fluc=
tuation amplitudes in the distance coordinate were also small
(£0.5 nm), and within a factor of two to three of the amplitudes
—_or found in protein structures's.
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Placing molecules with Bohr radius resolution
using DNA origami

Jonas J. Funke and Hendrik Dietz*



Going smaller...

Oax = Sqrt(ksT/ks)

derr '
M :
x x

Programmable motion of DNA origami mechanisms

Alexander E. Marras, Lifeng Zhou, Hai-Jun Su, and Carlos E. Castro’



Going smaller...

Molecular 3D Printer

Rigid 3D Frameworks
&
Controllable Actuators

Macro-Molecular
Building-Blocks

---------
mee e e e e e e e me 2T T LT T LT T e 2Ta T aTa S aTa aTa

Molecular additive manufacturing workshop, 2016 (w/ Eric)



Going smaller...

Spiroligomer “bricks” - e
(Schafmeister): .

l Pairs of

bonds

N
connect
O&O l’igid'
Rg—N~2 building
blocks
RO which
04/':.. N together
—Ro direct
R’N functional
' Co,H groups

~ 2 nm

https://www.energy.gov/sites/prod/files/2016/06/f33/Technology%20presentation%20-%20Shafmeister.pdf



https://www.energy.gov/sites/prod/files/2016/06/f33/Technology%20presentation%20-%20Shafmeister.pdf

Going smaller...

Molecular 3D Printer

Rigid 3D Frameworks
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Going smaller...

Double-TAL staple proteins

Template DNA double strand

Self-assembly of genetically encoded DNA-protein
hybrid nanoscale shapes

Florian Praetorius, Hendrik Dietz"



Going smaller...

Design of orthogonal protein heterodimers (Nature, 2018)

...we show that protein—protein ©

interaction specificity can be achieved
using extensive and modular side-chain
hydrogen-bond networks.
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37_BBBB_a
37_BBBB_b
15_a

15_b
37_XAAXA _a
37 _XAAXA b
101_a
101_b
126_a
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147 a
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116_a
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131_a
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130_a

130_b
13_2:341_a
13_2:341 b
13_1:234_a

Chen, Z., Boyken, S. E., Jia, M., Busch, F.,
Flores-Solis, D., Bick, M. J., ... & Bermeo, S.
...Baker, D (2019). Programmable design of

orthogonal protein heterodimers. Nature,
565(7737), 106-111.
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Going smaller... beta solenoid proteins (BSPs)

Diverse shapes among natural proteins:

Extensive diversity
even among BSP proteins/domains:

Q=004
: 5;?33}5“ <

= Z
~
i § g ~i trgﬁg:::‘aas'e Ta'lspme
endorhamnosidase
= Y s = : %_
Parker, A., Rav1kumar, K., & Cox, D. (2017). Molecular % »
dynamics-based strength estimates of beta solenoid proteins. YadA adhesin

Soft matter, 13(36), 6218-6226. Kajava, A. V., & Steven, A. C. (2006). 3-rolls, -

helices, and other [3-solenoid proteins. Advances
in protein chemistry, 73, 55-96.



Going smaller...

A Protein designs

Class averages

scale bar (all) 100A
approx. span 112A

104A

approx. length of arm 105A

Modular repeat protein sculpting using rigid
helical junctions

TJ Brunette®® '), Matthew J. Bick*?(, Jesse M. Hansen®<, Cameron M. Chow®®, Justin M. Kollman?,
and David Baker*®d



Summary
Image:

-Using expansion microscopy and in-situ optical sequencing of DNA,
we are on path to “arbitrary resolution, infinite color microscopy” for bio

-Sequencing neuron-indexing RNA barcodes this way should allow full
mammalian brain connectomes for ~$30M

Construct:
-DNA origami allows ~5 nm patterning of diverse materials over ~100
nm length scales by self-assembly, with trivial/facile design

-We should be able to organize DNA origami into larger systems by
patterning them on shrunken DNA microarrays

-A “molecular 3D printer’, made through various steps involving DNA
origami, DNA templating of proteins / peptides, and modular protein
engineering with fixed backbones and programmable interfaces, could be
an interesting first step to explore and demo “APM” principles



