

FROM QUANTUM NOISE TO HEAT: ACCELERATION TEMPERATURE, BLACK HOLE EVAPORATION AND THE DYNAMICAL CASIMIR EFFECT

W. Unruh, **Notes on Black Hole Evaporation**, Phys Rev D, 1976

S. Carroll, **Spacetime and Geometry**, Addison Wesley, 2004

W. Rindler, **Kruskal Space and the Uniformly Accelerated Frame**, Am J Phys, 1966

P. Davies, **Scalar Particle Production in Schwarzschild and Rindler Metrics**, J Phys A, 1975

S. Hawking, **Particle Creation by Black Holes**, Commun Math Phys, 1975

L. Crispino et al., **The Unruh Effect and Its Applications**, Rev Mod Phys, 2008

R. Vijayaraghavan, **Amplifying Quantum Signals Using a Dynamical Bifurcation**, PhD Thesis, 2008

I. Siddiqi et al., **RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement**, PRL, 2004

A. Lambrecht et al., **Motion Induced Radiation From a Vibrating Cavity**, PRL, 1996

M. Devoret, **Transforming “Vacuum Energy” Into Heat**, Talk at ESPCI, 2008

M. Devoret, **Personal Communication**, 2008

ADAM MARBLESTONE

Noise: Fluctuation, Dissipation, Amplification and Information

Fall 2008

AGENDA

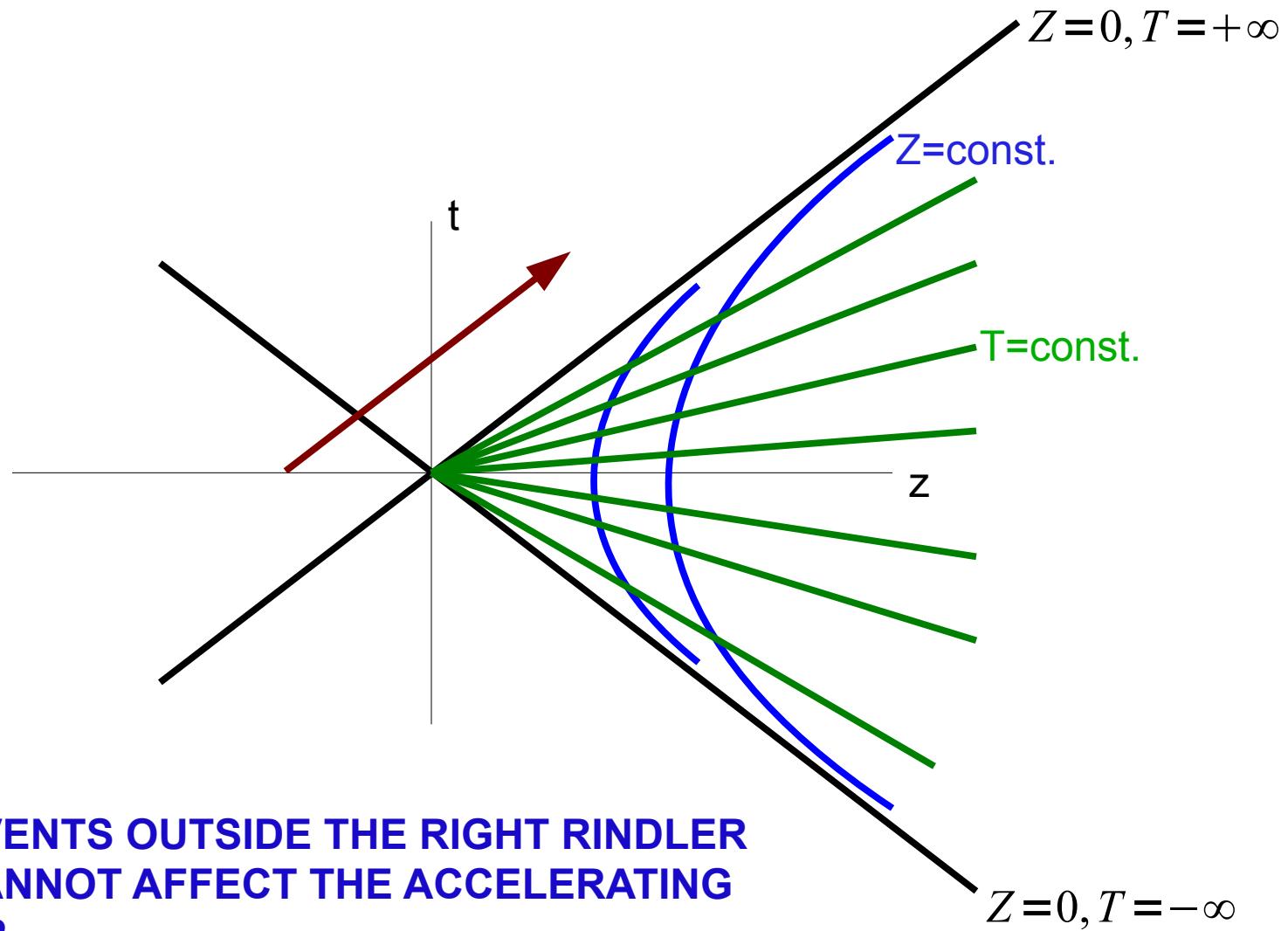
ACCELERATION TEMPERATURE

PARTICLE CREATION BY SCHWARZSCHILD BLACK HOLES

DYNAMICAL CASIMIR EFFECT OBSERVED IN QUANTUM LIMITED AMPLIFIERS

**ACCELERATION TEMPERATURE
(THE UNRUH EFFECT):
TO AN ACCELERATING
OBSERVER THE ORDINARY
VACUUM CONTAINS A
THERMAL SPECTRUM OF
PARTICLES**

“RIGID” ACCELERATION IN SR



$t = 0$: ROD AT REST

**SUPPLY A “UNIFORM”, “CONSTANT”
PROPER ACCELERATION TO THE ROD
(THESE ARE SUBTLE IN SR)**

**FIX A COORDINATE SYSTEM TO THE ROD
WHICH ALIGNS WITH INERTIAL COORDINATE
SYSTEM AT $t=0$**

“RIGID” ACCELERATION IN SR

FOR $t > 0$ EVENTS OUTSIDE THE RIGHT RINDLER WEDGE CANNOT AFFECT THE ACCELERATING OBSERVER

COORD. DEPENDENCE OF FIELD QUANTIZATION

$$-\frac{\partial^2 \phi}{\partial t^2} + \nabla^2 \phi = 0$$

$$\phi(x, t) = \sum_k a_k \cdot f_k(x, t) + \bar{a}_k \cdot \bar{f}_k(x, t)$$

$$\begin{aligned} a_k |0_f\rangle &= 0 \\ [a_k, a_{k'}] &= [\bar{a}_k, \bar{a}_{k'}] = 0 \\ [a_k, \bar{a}_{k'}] &= \delta_{kk'} \end{aligned}$$

$f_k(x, t)$ IS POSITIVE-FREQUENCY
 $\bar{f}_k(x, t)$ IS NEGATIVE-FREQUENCY

POSITIVE VS. NEGATIVE
FREQUENCY DEFINES THE
DISTINCTION BETWEEN
ANNIHILATION AND
CREATION OPERATORS

COORD. DEPENDENCE OF FIELD QUANTIZATION

$f_k(x, t)$ IS POSITIVE-FREQUENCY

$\bar{f}_k(x, t)$ IS NEGATIVE-FREQUENCY

POSITIVE FREQUENCY CONDITION IS OBSERVER-DEPENDENT

ACCELERATED AND INERTIAL OBSERVERS DISAGREE ABOUT WHICH MODES HAVE POSITIVE FREQUENCY!

THEREFORE ACCELERATED AND INERTIAL OBSERVERS QUANTIZE FIELD DIFFERENTLY---> HAVE DIFFERENT VACUUM STATES

COORD. DEPENDENCE OF FIELD QUANTIZATION

BOGOLIUBOV TRANSFORM BETWEEN ACCELERATED AND INERTIAL VACUA

$$\phi(x, t) = \sum_k a_k \cdot f_k(x, t) + \bar{a}_k \cdot \bar{f}_k(x, t) = \sum_k b_k \cdot g_k(x, t) + \bar{b}_k \cdot \bar{g}_k(x, t)$$

$$\begin{aligned} a_k |0_f\rangle &= 0 & b_k |0_g\rangle &= 0 \\ [a_k, a_{k'}] &= [\bar{a}_k, \bar{a}_{k'}] = 0 & [b_k, b_{k'}] &= [\bar{b}_k, \bar{b}_{k'}] = 0 \\ [a_k, \bar{a}_{k'}] &= \delta_{kk'} & [b_k, \bar{b}_{k'}] &= \delta_{kk'} \end{aligned}$$

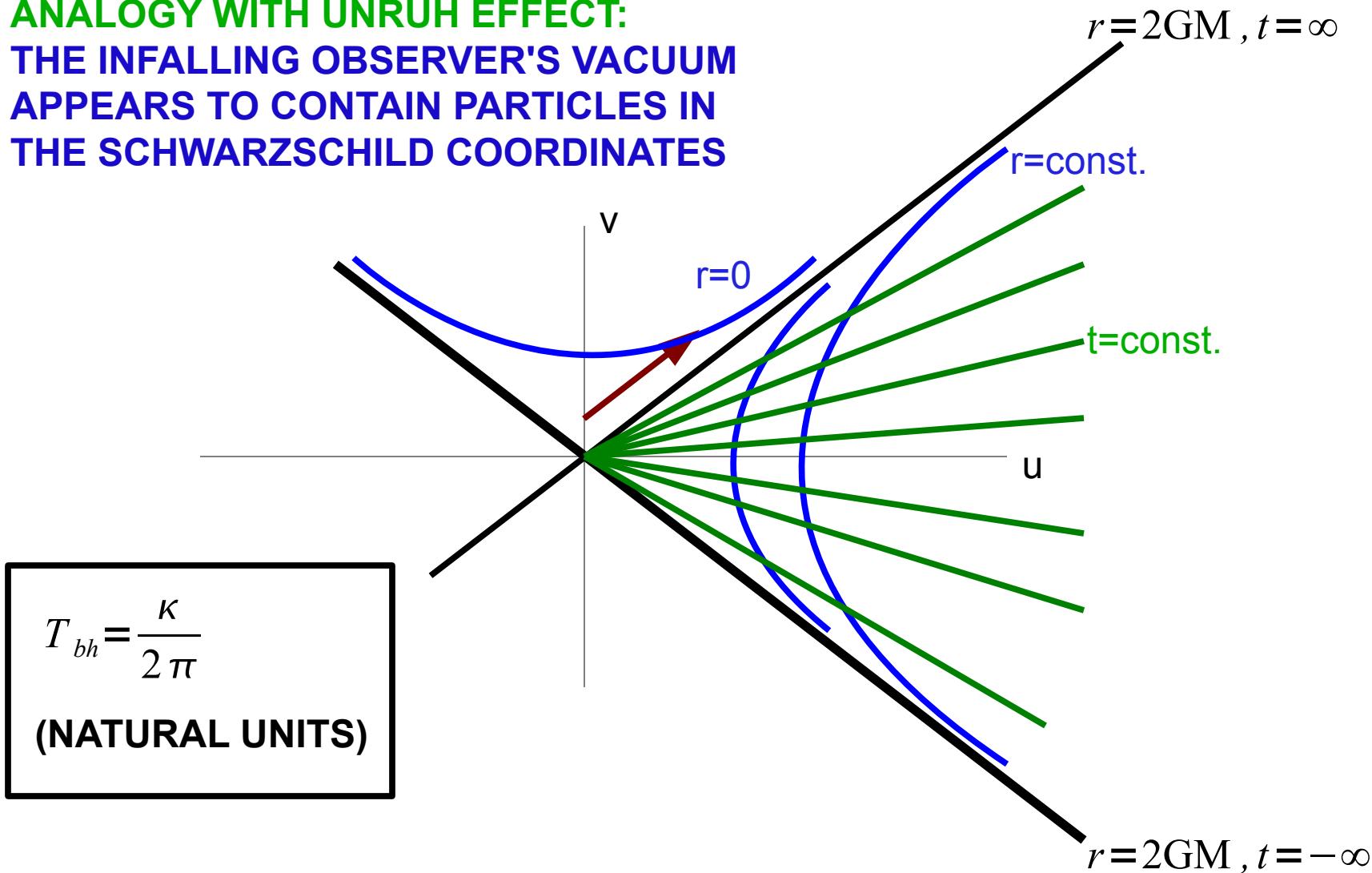
SINCE EACH BASIS OF MODE FUNCTIONS IS COMPLETE,
CAN EXPAND ONE IN TERMS OF THE OTHER, BUT POSITIVE
AND NEGATIVE FREQUENCIES MAY BE MIXED BY THE TRANSFORMATION

$$g_k = \sum_{k'} \alpha_{kk'} f_{k'} + \beta_{kk'} \bar{f}_{k'}$$

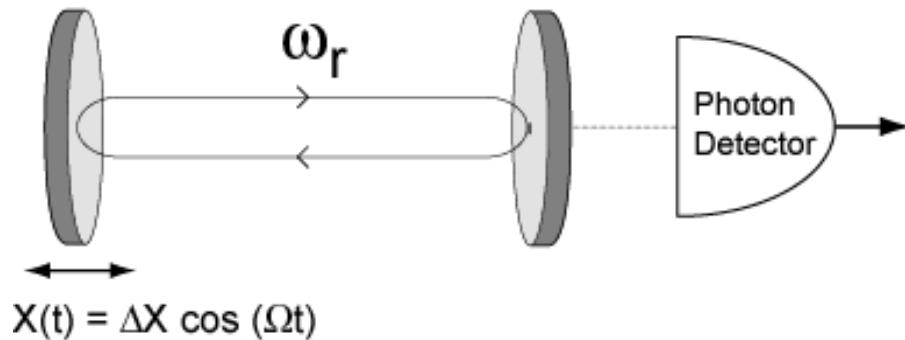
DIFFERENCE IN VACUUM STATES IS DUE ONLY TO THE MIXING

$$\langle 0_f | \bar{a}_k a_k | 0_f \rangle = 0 \quad \langle 0_f | \bar{b}_k b_k | 0_f \rangle = \sum_{k'} |\beta_{kk'}|^2$$

ACCEL. TEMP.

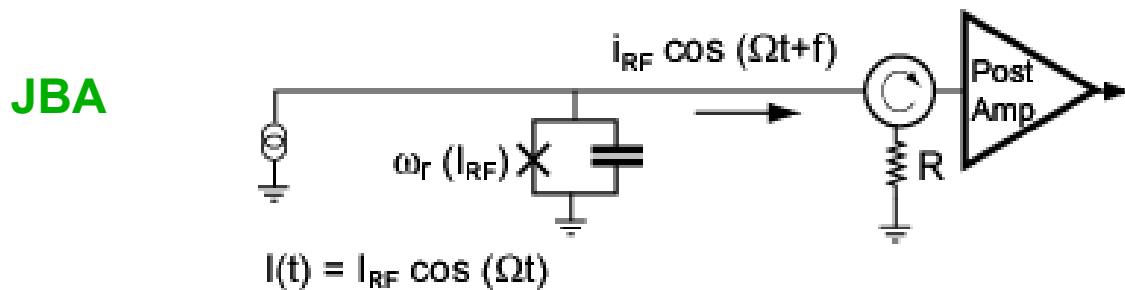

$$\langle 0_M | \bar{b}_k^R b_k^R | 0_M \rangle = \sum_{k'} |\beta_{k k'}|^2 = \frac{1}{e^{2\pi|k|/a} - 1}$$

ACCELERATING OBSERVER
SEES THE MINKOWSKI
VACUUM TO CONTAIN A
BLACKBODY SPECTRUM!


$$T_a = \frac{\hbar a}{2\pi c k_B}$$

BLACK HOLE EVAP.

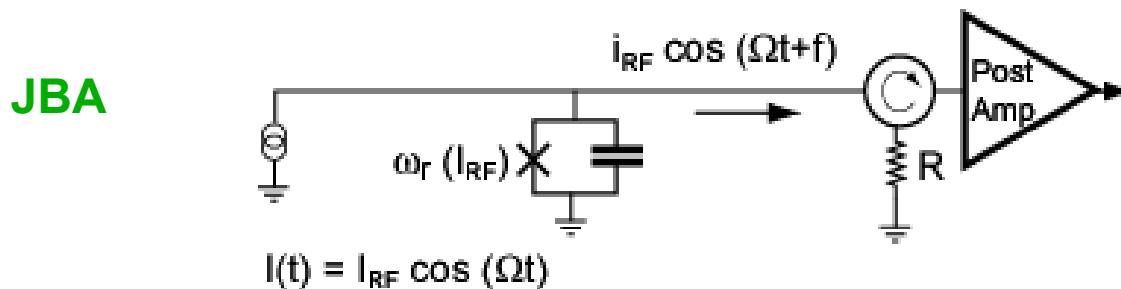
ANALOGY WITH UNRUH EFFECT:
THE INFALLING OBSERVER'S VACUUM
APPEARS TO CONTAIN PARTICLES IN
THE SCHWARZSCHILD COORDINATES


DYNAMICAL CASIMIR EFFECT

PARAMETRICALLY DRIVEN CAVITY IN GROUND STATE (ONLY 0-PT FLUCTUATIONS) PRODUCES THERMAL PHOTONS

CAVITY RESONANT FREQ VARIES AT TWICE THE FREQ OF THE GROUND STATE MODE

DYNAMICAL CASIMIR EFFECT



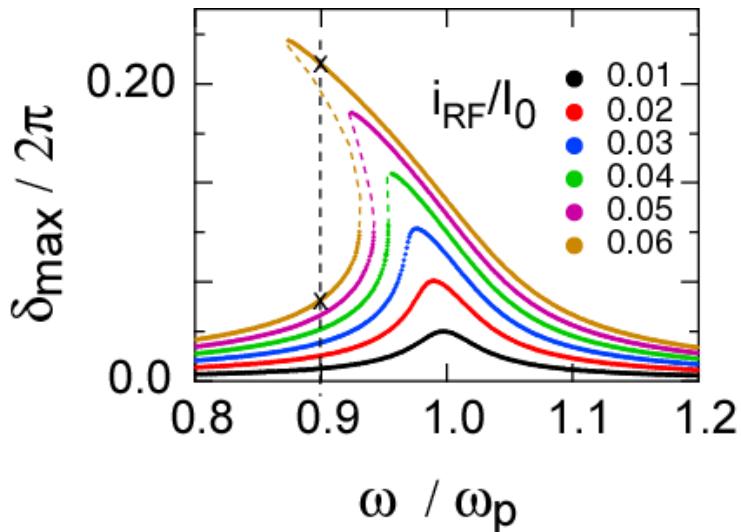
PARAMETRICALLY DRIVEN NONLINEAR JOSEPHSON OSCILLATOR
EXCITED BY QUANTUM NOISE FROM TRANSMISSION LINE (ONLY
0-PT FLUCTUATIONS) PRODUCES THERMAL PHOTONS

BEHAVES LIKE RESONATOR WITH FREQ VARIED AT TWICE THE
DRIVE FREQ ~ RESONANT FREQ

ALSO ACTS AS A PARAMETRIC AMPLIFIER IN SCATTERING MODE

DYNAMICAL CASIMIR EFFECT

THERMAL PHOTONS PRODUCED BY DCE


=

ADDED QUANTUM NOISE FOR PHASE-PRESERVING AMPLIFIER

MINIMUM PHASE-PRESERVING AMPLIFIER NOISE TEMPERATURE
VIA CAVES' THEOREM:

$$T_N = \frac{\hbar \Omega}{2 k_B} \quad \longleftrightarrow \quad T_a = \frac{\hbar a}{2 \pi c k_B}$$

DYNAMICAL CASIMIR EFFECT

$$T_{activation} = \frac{\hbar\Omega}{2k_B} \coth\left(\frac{\hbar\Omega}{2k_B T}\right) \rightarrow T_N = \frac{\hbar\Omega}{2k_B}$$

OBSERVE ARRHENIUS LAW FOR **THERMALLY ACTIVATED TRANSITIONS** BETWEEN METASTABLE OSCILLATION STATES IN JBA NONLINEAR OSCILLATOR

AS “REAL” BATH TEMPERATURE GOES TO ZERO, ACTIVATION TEMPERATURE GOES TO CAVES’ MINIMAL PHASE PRESERVING AMPLIFIER NOISE TEMPERATURE

CONCLUSIONS

NATURAL UNITS

$$T_N = \frac{\Omega}{2}$$

AMPLIFICATION

$$T_a = \frac{a}{2\pi}$$

ACCELERATION

$$T_{bh} = \frac{\kappa}{2\pi}$$

EVAPORATION

MECHANISMS NOT AS DISSIMILAR AS THEY MIGHT APPEAR

CONVERT QUANTUM NOISE INTO HEAT

VIA BOGOLIUBOV TRANSFORMATION OF FIELD OPERATORS
IN PRESENCE OF DETERMINISTIC ENERGY SOURCE...

ADDITIONAL SLIDES

COORD. DEPENDENCE OF FIELD QUANTIZATION

$f_k(x, t)$ IS POSITIVE-FREQUENCY

$\bar{f}_k(x, t)$ IS NEGATIVE-FREQUENCY

POSITIVE FREQUENCY CONDITION IS OBSERVER-DEPENDENT

A DETECTOR ON A PATH THROUGH
FLAT SPACETIME PARAMETRIZED BY
PROPER TIME WILL DEFINE A WAVE
MODE f_k ON SPACETIME TO BE
POSITIVE-FREQUENCY IF:

$$\frac{dx^\mu}{d\tau} \partial_\mu f_k = -i \cdot \omega f_k$$

$$\omega > 0$$

ACCELERATED AND INERTIAL OBSERVERS DISAGREE ABOUT WHICH
MODES HAVE POSITIVE FREQUENCY!